
Process and signals

Introduction

1. Processes and signals form a fundamen-

tal part of the UNIX operating environ-

ment. They control almost all activities

performed by UNIX computer system.

2. An understanding of how UNIX manages

processes will hold any systems program-

mer, applications programmer or system

administrator in good stead.

3. We will look at how processes are han-

dled in the Linux environment and how to

find out what computer is doing at any

given time. And how to start and stop

process, how to make process cooperates

with each other, how to avoid zombies(in

which parents died before children).

1

Process

• What is process?

1. An address space with one or more

threads executing within that address

space, and the required system resources

for those threads. (the Single UNIX

specification, version 2)

2. A process is a program in execu-

tion and can identified by its unique

PID (process identification) num-

ber.

3. The kernel controls and manages pro-

cesses. Multiple processes are running

and monitored by the Linux kernel, al-

locating each of the processes a little

slice of the CPU in a way that is un-

noticeable to the user.

• Structure
2

A process consists of the executable

program, its data and stack, variables(occupying

system memory), open files(file descrip-

tor) and an environment.

UNIX allows many users to access the

system at the same time. Each user

can run many programs, or even many

instances of the same program, at the

same time. The system itself runs other

programs to manage system resources and

control user access.

Typically, UNIX system will share code

and system libraries between processes,

so that there is only one copy of the code

in memory at any one time.

For example: two users, Neil and rick

both run the command “grep” on the

shell at the same time to look for dif-

ferent strings in different files. This pro-

duces out two processes, each has it own

process identifier, PID. And one copy of

program code of “grep” is loaded into

the memory as read only, two users share
this code. And the system library is also
shared(remind you the shared library).

• What process is running?

1. ps command

ps prints out the information about
the active processes. without options
it only prints out the information about
process associated with the control-
ling terminal.

$ ps

PID TTY TIME CMD

25089 pts/1 00:00:00 tcsh

25115 pts/1 00:00:00 ps

$ps -au

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

lchang 25089 0.0 0.5 2860 1380 pts/1 S 12:27 0:00 -csh

lchang 25116 0.0 0.3 2856 896 pts/1 R 12:37 0:00 ps -au

Explanation: USER: user’ name; PID:
process identifier; CPU: cputime/real

time percentage; MEM: percentage of

memory occupied; VSZ: virtual size of

the process; RSS: resident pages and

amount of shared pages; TTY: ter-

minal identifier; STAT: process state,

R means runable, S means sleeping.

START: starting time. TIME: cumu-

lative execution time; COMMAND :

command on shell.

2. pstree command pstree is another

way to see what process are running

and what process are child process.

$ pstree

init-+-atd

|-3*[automount]

|-bdflush

|-cannaserver

|-crond

|-dhcpcd

|-esd

|-geyes_applet

|-gmc

|-gnome-name-serv

|-gnome-smproxy

|-gnome-terminal-+-gnome-pty-helpe

| |-tcsh

| ‘-tcsh---pstree

|-identd---identd---3*[identd]

|-jserver

|-keventd

|-khubd

|-klogd

|-kreclaimd

|-kswapd

|-kupdated

|-lockd

|-login---tcsh---startx---xinit-+-.xinitrc---gnome-session

| ‘-X

|-magicdev

|-mdrecoveryd

|-5*[mingetty]

|-panel

|-portmap

|-rpc.statd

|-rpciod

|-sawfish

|-sshd

|-syslogd

|-tasklist_applet

|-xemacs

|-xfs

|-xinetd

|-xscreensaver

‘-ypbind---ypbind---2*[ypbind]

Explanation: pstree command displays

all process as a tree with its root being

the first process that runs, called init.

If the user name is specified, then that

user’s processes are at the root of the

tree.If a process creates more than one

process of the same name, pstree visu-

ally merges the identical branches by

putting them in square brackets and

prefixing them with the number of times

the process is repeated.

• Parent and child

1. System call and Process From shell

running a program is done with sys-

tem calls, that call for service from

Kernel. And this the only way that a

process can access the hardware of the

system. There are number of system

calls allow a process to be created, ex-

ecuted and terminated.

2. Create a new process from within a

program.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void)

A new process is created with the fork

system call. It creates a duplicate of

the calling process. The new process

is called the child and the process that

create it is called the parent. Both

processes share CPU, the child pro-

cess has a copy of the parents’ en-

vironment, open files, user identifier,

current working directory and signals.

The call to fork in the parent returns

the PID of the new child process. At

the same time, the call return to the

new child a 0 to indicate it is a child.

pid_t new_pid;

new_pid = fork();

switch(new_pid){

case -1: /* erro */

break;

case 0: /*we are child*/

break;

default: /*we are parent*/

break;

}

3. Exercise: A program calls fork()

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

int main()

{

pid_t pid;

char *message;

int n;

printf("fork program starting\n");

pid = fork();

switch(pid){

case -1:

fprintf(stderr, "fork failed");

exit(1);

case 0:

n=3;

message = "Child";

break;

default:

n=4;

message = "Parent";

break;

}

for(; n>0 ; n--){

printf("%s %d\n", message, n);

sleep(1);

}

exit(0);

}

4. Waiting for the children

The parent is programmed to go to

sleep while waiting for the child takes

care of details, such as handling pipes,

background processing, redirection.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *stat_loc);

wait causes the parent process to pause

until one of its child processes is ter-

minated. If the wait is successful,

it returns the PID of the child pro-

cess that stopped and the child’s

exit status. The status information

is written to location that “stat loc”

points to.

If the parent doesn’t wait and child

still exits, the child is put in a zombie

state, it will stay in the state until ei-

ther the parent call wait or the parent

dies.

If the parent dies before child, the init

process adopts the orphaned zombie

processes.

The wait call is not only used to

put parent go to sleep, also to make

sure that the process terminates

properly.

The exit status are defined in < sys/wait.h >

as followed:

WIFEXITED(stat_val): Non-zero if the child

is terminated normally.

WEXITSTATUS(stat_val): If WIFEXITED is

non-zero, this returns the exit code.

WIFSIGNALED(stat_val):Non-zero if the child

is terminated on an uncaught signal.

WTERMSIG(stat_val):If WIFSIGNAL is non-zero,

this returns the signal number.

WIFSTOPPED(stat_val):Non-zero if the child

has stopped.

WSTOPPED(stat_val): If WIFSTOPPED is

non-zero, this returns the signal number.

5. Exercise: A program calls wait()

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/wait.h>

int main()

{

pid_t pid;

char *message;

int n;

int stat_val;

printf("fork program starting\n");

pid = fork();

switch(pid){

case -1:

fprintf(stderr, "fork failed");

exit(1);

case 0:

n=3;

message = "Child";

break;

default:

n=2;

message = "Parent";

break;

}

for(; n>0 ; n--){

printf("%s %d\n", message, pid);

sleep(1);

}

if(pid !=0){

pid_t child_pid;

child_pid = wait(&stat_val);

printf("Child %d has finished\n",

child_pid);

if(WIFEXITED(stat_val))

printf("Child exit with code %d\n",

WEXITSTATUS(stat_val));

else

printf("Child terminate abnormally\n");

}

exit(WEXITSTATUS(stat_val));

}

Signals

• What is signal?

A signal is an event generated by the

UNIX system in response to some con-

dition, upon which a process may in turn

take some action.

Signals are generated by some error con-

ditions, such as memory segment viola-

tions, floating point processor errors or il-

legal instructions. They are generated by

the shell and terminal handlers to cause

interrupts.

Signals can also be explicitly sent from

one process to another as a way of pass-

ing information or modifying behavior.

Generally, Signals can be generated,

caught and acted upon, or ignored.

Signal names are defined by including the

header file < signal.h > as followed:

3

SIGABORT: Process abort;

SIGALRM: Alarm clock;

SIGFPE: Floating point exception

SIGHUP: Hangup

SIGILL: illegal instruction

SIGINT: Terminal interrupt.

SIGKILL: kill (can’t be caught or ignored)

SIGPIPE: write on a pipe with no reader

SIGQUIT: Termianl quit

SIGSEGV: Invalid memory segment ac-

cess

SIGTERM: Termination

SIGUSR1: User-defined signal 1

SIGUSR2: User-defined signal 2

• Programming interface of signal handling

1. signal()

#include <signal.h>

void (*signal(int sig, void(*func)(int)));

It says that signal is a function that

takes two parameters, sig and func.

The signal is to be caught or ignored is

given as argument sig. The function

to be called when the specified sig-

nal is received is given as func. This

function must take a single int argu-

ment(the signal received) and is of type

void.

This function can be one of these two

special values:

SIG_IGN: Ignore the signal

SIG_DFL : Restore the default behavoir

2. A program CtrlC

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

void ouch(int sig)

{

printf("Ouch! -I got the signal %d\n",sig);

(void) signal(SIGINT, SIG_DFL);

}

int main()

{

(void) signal(SIGINT, ouch);

while(1){

printf("Hello World!\n");

sleep(1);

}

}

Explanation: the function ouch reacts

to the signal which is passed in the pa-

rameter sig. And this function is called

when a signal is occurred. It prints out

a message, and then handle the signal

SIGINT(by default generated by press-

ing Ctrl-C), reset it back to the default

behavior.

The main function has an infinite loop

of printing a message, unless a signal

is received and handled by call for sig-

nal().

Execute this program to see what is

happened.

3. sigaction()

#include <signal.h>

int sigaction(int sig, const struct

sigaction *act,

sigaction *oact);

The structure sigaction is used to de-

fine the actions to be taken on receipt

of the signal specified by int sig. This

structure include three fields:

void sa_handler/*function,SIG_DFL,SIG_IGN*/

sigset_t sa_mask /*signals to be blocked */

int sa_flags /*signal action modifier*/

4. A program contains a question

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

void question()

{

printf("continue or quit?\n");

sleep(5);

}

int main()

{

struct sigaction act;

act.sa_handler = question;

sigemptyset(&act.sa_mask);

act.sa_flags=0;

sigaction(SIGINT, &act,0);

while(1){

printf("current time is:\n");

system("date");

sleep(1);

}

}

Explanation: This program gives user
choice to stop printing local time by
call for “sigaction” to handle the sig-
nal SIGINT(Ctrl-C). The sigaction con-
tains a structure “act”, whose handler

is the function “question”, where it

asks user willing to continue or not,

and waits 5 seconds for user’s answer.

Type “Ctrl- ” to Quit this program.

• Sending Signals

1. kill()

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

The kill function sends the specified

signal, sig, to the process whose iden-

tifier is given by pid. It returns 0 on

success. It can fail if the program

doesn’t have permission to send the

signal, commonly because the target

process is owned by another user, which

means that both process should have

the same user ID, although the supe-

ruser may send signals to any process.

2. alarm()

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

The alarm call schedules the delivery

of a SIGALRM signal in seconds time.

In fact, the alarm will be delivered shortly

after that, due to processing delays

and scheduling uncertainties. A value

of 0 will cancel any outstanding alarm

request.

Calling alarm before the signal is re-

ceived will cause the alarm to be resched-

uled. Each process can have only one

outstanding alarm. It returns number

of seconds left before any outstanding

alarm call would be sent, or -1 if fails.

3. A program implement alarm

#include <signal.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

static int alarm_fired=0;

void ding(int sig)

{

alarm_fired =1;

}

int main()

{

pid_t pid;

pid =fork();

if(pid <0){

printf("unable to fork.\n");

exit(1);

}else{

if(pid>0){

signal(SIGALRM, ding);

pause();

if(alarm_fired)

printf("DingDong! alarm clock.\n");

printf("current time is: \n");

system("date");

exit(0);

}else{

sleep(1);

kill(getppid(),SIGALRM);

exit(0);

}

}

}

Explanation: This program creates a

child process to send alarm to par-

ent process, parent process catch the

alarm signal and produce out the cur-

rent time.

Note: the child process gets the par-

ent ID by function “getppid()”, and it

sends the SIGALRM to parent process

to this PPID.

THE END

